

LIS009422365B2

(12) United States Patent

Ohlsen et al.

(54) PEPTIDE OR ARRANGEMENT OF PEPTIDES FORMING A STAPHYLOCOCCUS AUREUS EPITOPE BINDING SITE

(71) Applicant: JULIUS-MAXIMILIANS-

UNIVERSITÄT WÜRZBURG,

Würzburg (DE)

(72) Inventors: Knut Ohlsen, Würzburg (DE); Udo

Lorenz, Güntersleben (DE); Roland E.

Kontermann, Stuttgart (DE)

(73) Assignee: JULIUS-MAXIMILIANS-

UNIVERSITÄT WÜRZBURG,

Würzburg (DE)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/346,435

(22) PCT Filed: Sep. 21, 2012

(86) PCT No.: **PCT/EP2012/068703**

§ 371 (c)(1),

(2) Date: Mar. 21, 2014

(87) PCT Pub. No.: WO2013/041707

PCT Pub. Date: Mar. 28, 2013

(65) Prior Publication Data

US 2014/0234339 A1 Aug. 21, 2014

Related U.S. Application Data

(60) Provisional application No. 61/545,763, filed on Oct. 11, 2011.

(30) Foreign Application Priority Data

Sep. 23, 2011 (EP) 11182598

(51)	Int. Cl.	
	A61K 39/395	(2006.01)
	A61K 39/40	(2006.01)
	A61K 39/00	(2006.01)
	A61K 45/00	(2006.01)
	A61K 47/00	(2006.01)
	C12N 5/07	(2010.01)
	C12N 5/16	(2006.01)
	C12P 21/08	(2006.01)
	C07K 16/00	(2006.01)
	C07K 16/12	(2006.01)
	G01N 33/569	(2006.01)
	A61K 38/00	(2006.01)
(50)	TIC CI	

(52) **U.S. Cl.**

CPC *C07K 16/1271* (2013.01); *G01N 33/56938* (2013.01); *A61K 38/00* (2013.01); *A61K 39/00*

(10) Patent No.:

US 9,422,365 B2

(45) **Date of Patent:**

Aug. 23, 2016

(2013.01); A61K 2039/505 (2013.01); C07K 16/1214 (2013.01); C07K 2317/77 (2013.01); C07K 2317/92 (2013.01); C07K 2319/00 (2013.01)

(58) Field of Classification Search

CPC . A61K 38/00; A61K 2039/505; A61K 39/00;
 C07K 16/1271; C07K 2319/00; C07K 16/1214
 See application file for complete search history.

(56) References Cited

FOREIGN PATENT DOCUMENTS

WO WO 02/072600 A2 9/2002 WO WO 2010/133600 A1 11/2010

OTHER PUBLICATIONS

Paul, William E., Fundamental Immunology, 3rd Edition, Raven Press, New York, Chap. 8, pp. 292-295 (1993).*

Rudikoff et al. (Proc. Natl. Acad. Sci. USA, 79(6):1979-1983.*

Colman P. M. (Research in Immunology, 145:33-36, 1994).* Bendig M. M. (Methods: A Companion to Methods in Enzymology, 1995; 8:83-93).*

International Search Report, dated Dec. 6, 2012, issued in PCT/EP2012/068703.

Joseph M. Patti, "A humanized monoclonal antibody targeting *Staphylococcus aureus*", Vaccine 22S, Dec. 6, 2004, vol. 22, Suppl. 1, pp. S39-S43, XP-002687631, ISSN: 0264-410X.

K. Ohlsen et al., "Development of antibody-based therapy targeting immunodominant antigens of *Staphylococcus aureus*", International Journal of Medical Microbiology, vol. 297, No. Suppl. 1, Sep. 1, 2007, XP008124403, ISSN: 1438-4221, p. 128.

Knut Ohlsen et al., "Immunotherapeutic strategies to combat staphylococcal infections", International Journal of Medical Microbiology, IJMM Aug. 2010, vol. 300, No. 6, pp. 402-410, XP-002687632, ISSN: 1618-0607.

Udo Lorenz et al., "Functional Antibodies Targeting IsaA of *Staphylococcus aureus* Augment Host Immune Response and Open New Perspectives for Antibacterial Therapy", Antimicrobial Agents and Chemotherapy, Chemotherapy, vol. 55, No. 1, Jan. 2011, XP-002687630, ISSN: 0066-4804, pp. 165-173.

* cited by examiner

Primary Examiner — Gary Nickol
Assistant Examiner — Lakia Tongue
(74) Attorney, Agent, or Firm — Birch, Stewart, Kolasch & Birch, LLP

(57) ABSTRACT

The invention concerns a peptide or arrangement of peptides forming a *Staphylococcus aureus* epitope binding site comprising a first amino acid sequence and a second amino acid sequence, wherein the first amino acid sequence is at least 88% identical to sequence SEQ ID NO:1 and wherein the second amino acid sequence is at least 88% identical to sequence SEQ ID NO: 2.

20 Claims, 5 Drawing Sheets

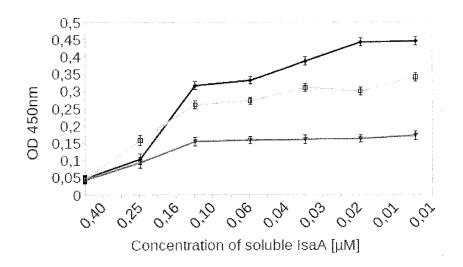


Fig. 1

Fig. 2

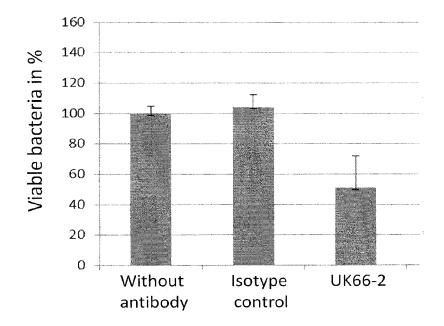


Fig. 3

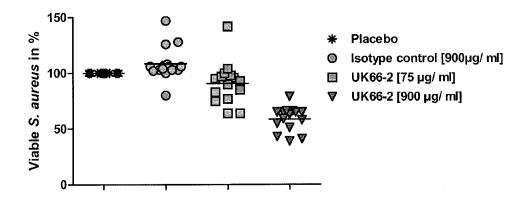


Fig. 4

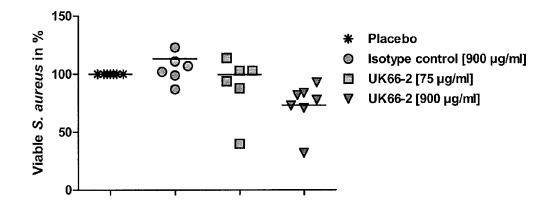


Fig. 5

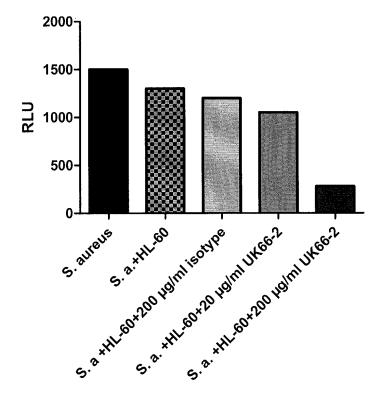


Fig. 6

PEPTIDE OR ARRANGEMENT OF PEPTIDES FORMING A STAPHYLOCOCCUS AUREUS EPITOPE BINDING SITE

CROSS REFERENCE TO RELATED APPLICATIONS

This application is the National Phase of PCT/EP2012/068703 filed on Sep. 21, 2012, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 61/545, 763 filed on Oct. 11, 2011, under 35 U.S.C. §119(a) to patent application Ser. No. 11/182,598.0 filed in Europe on Sep. 23, 2011, all of which are hereby expressly incorporated by reference into the present application.

The invention concerns a peptide or arrangement of peptides forming a *Staphylococcus aureus* (=*S. aureus*) epitope binding site, a kit containing this peptide or arrangement of peptides, a use of this peptide or arrangement of peptides, a cell line which produces antibodies comprising this peptide or arrangement of peptides and a method of treatment.

From WO 2010/133600 A1 antibodies or fragments thereof directed against an *S. aureus* epitope of IsaA are known. These antibodies have a binding site formed by a heavy chain with a first variable region and a light chain with a second variable region wherein the sequence of the first variable region may be SEQ ID NO:13 and the sequence of the second variable region may be SEQ ID NO:14. The effectiveness of antibodies vis-à-vis *S. aureus* in a mammal depends on killing of *S. aureus* by phagocytosis by phagocytizing blood cells. The antibodies known from WO 2010/133600 A1 accelerated the phagocytosis process. After 30

2

sequence is at least 88% identical to sequence SEQ ID NO:1 and the second amino acid sequence is at least 88% identical to SEQ ID NO:2.

In an embodiment the first amino acid sequence is at least 90% identical, in particular at least 92.5% identical, in particular at least 95% identical, in particular at least 97.5% identical, in particular 100% identical, to sequence SEQ ID NO:1. The second amino acid sequence is at least 90% identical, in particular at least 92.5% identical, in particular at least 97.5% identical, in particular at least 97.5% identical, in particular at least 97.5% identical, in particular 100% identical, to sequence SEQ ID NO:2.

The first amino acid sequence may be part of the heavy chain and/or the second amino acid sequence may be part of the light chain of an antibody or antibody fragment. In this case the first amino acid sequence and the second amino acid sequence form the variable region of the antibody or antibody fragment. The binding site can also be formed by a single chain variable fragment. In this case the first amino acid sequence and the second amino acid sequence are comprised by a single chain variable fragment (scFv) or by a single chain variable fragment comprising an Fc fragment of an antibody (scFvFc). The Fc fragment enhances phagocytosis of *S. aureus* to which the scFvFc has bound.

The inventors modified the binding region of one of the antibodies known from WO 2010/133600 A1 and thereby developed a binding site that is more effective in support of killing of *S. aureus* by phagocytosis by phagocytizing blood cells in heparinized human whole blood than the known antibody. As can be seen from the following alignment sequence SEQ ID NO:1 differs in 17 form 118 amino acids from the corresponding sequence SEQ ID NO:13 and SEQ ID NO:2 differs in 8 from 113 amino acids from SEQ ID NO:14 known from WO 2010/133600 A1:

SEQ	ID	NO:	1	EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYYMSWVRQAPGKGLEWVSDINGNGGSTYY V L ESGGGLV GGSL LSC ASGFTFSNYYMSWVRO P K LE V DINGNGGSTYY	60
SEQ	ID	NO:	13	MADVKLVESGGGLVKLGGSLKLSCSASGFTFSNYYMSWVRQTPEKRLELVADINGNGGSTYY	62
SEQ	ID	NO:	1	PDTVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRRGGYYALDYWGQGTTVTVSS PDTVKGRFTISRDN KNTLYLOM SL EDTA YYCVRRGGYYALDYWGOGTTVTVSS	118
SEQ	ID	NO:	13	PDTVKGRFTISRDNAKNTLYLQMSSLKSEDTALYYCVRRGGYYALDYWGQGTTVTVSS	120
SEQ	ID	NO:	2	DVVMTQTPLSLSVTPGQPASISCRSSQSLVHINGNTYLHWYLQKPGQSPQLLIYRVSNRF DVVMTOTPLSL V G ASISCRSSOSLVHINGNTYLHWYLOKPGOSP LLIYRVSNRF	60
SEQ	ID	NO:	14	DVVMTQTPLSL V G ASISCRSSQSLVHINGNTILHWILQKPQQSP LLITRVSNRF DVVMTQTPLSLPVSLGDQASISCRSSQSLVHINGNTYLHWYLQKPGQSPKLLIYRVSNRF	60
SEQ	ID	NO:	2	SGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCSQSTHVPWTFGGGTKLELKR	113
SEQ	ID	NO:	14	SGVPDRFSGSGSGTDFTLKISRVEAED GVY CSQSTHVPWTFGGGTKLELKR SGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTHVPWTFGGGTKLELKR	113

minutes of incubation the killing of S. aureus by human neutrophils in the presence of the antibodies specific for an epitope of IsaA has been enhanced by about 25% to 30% $_{50}$ compared to an unspecific control antibody.

The object of the present invention is to provide a *S. aureus* epitope binding site that is very effective in an antibody or fragment of antibody with respect to the killing of *S. aureus* by phagocytizing blood cells and therefore is well suited for a treatment of infections caused by *Staphylococcus aureus*. Furthermore, the binding site should be well suited for a detection of *S. aureus*. A further object of the present invention is to provide a kit containing the binding site, a use of the binding site, a cell line secreting antibodies, antibody fragments, ScFvs or ScFvFcs comprising the binding site and a method of treatment.

According to the invention a peptide or arrangement of peptides forming a *Staphylococcus aureus* epitope binding 65 site comprising a first amino acid sequence and a second amino acid sequence is provided. The first amino acid

Identical amino acids are displayed in the interspace between the sequences.

Antibodies containing the variable region comprising the first amino acid sequence and the second amino acid sequence exhibit high affinity to the immunodominant structure IsaA in methicillin resistant and methicillin sensitive *S. aureus* and a high specificity with respect to the binding to this structure

The antibody may be a monoclonal antibody, in particular an antibody of the IgG type, in particular of the IgG1 type, the IgG2 type, or the IgG4 type. The fragment may be an Fab fragment, Fab/c fragment, Fv fragment, Fab' fragment or F(ab')₂ fragment. These fragments are particularly useful for the detection of *S. aureus* because the cell wall of *S. aureus* contains protein A which unspecifically binds immunglobulins via their Fc-parts.

In an embodiment of the invention the antibody is a recombinant antibody produced in cells of a cell line, in particular an insect cell line or a mammalian cell line, in particular a Chinese hamster ovary (CHO) cell line or a hybridoma cell

line. The part of the antibody which is not formed by the first amino acid sequence and the second amino acid sequence is at least 85% identical, in particular at least 90% identical, in particular at least 92.5% identical, in particular at least 95% identical, in particular at least 97.5% identical, in particular 5 100% identical, to the corresponding part of a human antibody. The light chain of the antibody can comprise sequence SEQ ID NO:6, in particular sequence SEQ ID NO:7 and the heavy chain can comprise the sequence SEQ ID NO:4, in particular SEQ ID NO:5, sequence SEQ ID NO:9, in particu- 10 lar sequence SEQ ID NO:10, or sequence SEQ ID NO:11, in particular SEQ ID NO:12. Sequences SEQ ID NO:7, SEQ ID NO:5, SEQ ID NO:10 and SEQ ID NO:12 comprise the leader sequence SEQ ID NO:8 which is from the MOPC 63, Ig kappa chain V-III of KV3A9 mouse. This leader sequence 15 enables a good expression in mammalian cells. The sequence SEQ ID NO:4 comprises sequence SEQ ID NO:1 and an IgG1 heavy chain, human γ1 allotype Gm 1,17. Sequence SEQ ID NO:6 comprises sequence SEQ ID NO:2 and the IgG light chain K. Sequence SEO ID NO:9 comprises sequence SEO 20 arrangement of peptides according to the invention for a ID NO:1 and the IgG2 heavy chain, allotype G2m(23). Sequence SEQ ID NO:11 comprises SEQ ID NO:1 and an IgG4 heavy chain.

The peptide or arrangement of peptides according to the invention may be used as a medicament. Especially they may 25 be used as a medicament for the treatment of a human being or an animal which human being or animal has an infection with S. aureus, especially methicillin resistant or methicillin sensitive S. aureus, or is at risk of getting such an infection. The treatment in the sense of this invention comprises pro- 30 phylaxis. The animal may be a mammal. The human being or the animal may have a mastitis, an S. aureus bacteremia, in particular a primary or secondary bacteremia, a blood stream infection, in particular a primary or secondary blood stream infection, a prosthetic infection, a graft infection, a soft tissue 35 infection, a surgery associated infection, an infant or newborn infection, a dialysis associated infection, a pneumonia, a bone infection, or a sepsis caused by the infection. The mastitis may be a bovine mastitis. If a cow has bovine mastitis no useable milk is produced by the cow and if the cow is treated 40 with antibiotics as it is usual in this case the milk produced by this cow has to be discarded until no antibiotics are contained in the milk of this cow. This disadvantage of the usual treatment may be avoided by use of the peptide or arrangement of peptides according to the invention as a medicament for the 45 treatment of the bovine mastitis.

The peptide or arrangement of peptides may be present in mixture with at least one other peptide or arrangement of peptides directed against at least one further epitope of S. aureus. This further epitope may be located on the antigen on 50 which the epitope is located, i. e. IsaA, or on a further antigen. The use of such a mixture as a medicament may be more efficient than the use of a medicament which solely contains the peptide or arrangement of peptides according to the invention. This may be owing to the high variability of S. aureus 55 that causes different extents of expression of the antigens on different strains such that more bacteria are recognized by the mixture of antibodies or fragments than by the antibodies or fragments alone.

The peptide or arrangement of peptides can be present in a 60 mixture with at least one antibiotic. In the human being or animal to be treated with the medicament mutated S. aureus may be present in addition to common S. aureus. The mutated S. aureus may have mutated IsaA that cannot be recognized by the peptide or arrangement of peptides according to the 65 invention. In this case the antibiotic may be effective against the mutated S. aureus.

The peptide or arrangement of peptides according to the invention may be present in a mixture with plasma or blood of a mammal, especially a human being. The inventors found that the peptide or arrangement of peptides according to the invention mixed with plasma may be much more effective than the peptide or arrangement of peptides according to the invention contained in a saline solution.

The medicament may be a medicament that is prepared for systemic and/or local application. The inventors have recognized that the treatment of a severe S. aureus infection with the peptide or arrangement of peptides according to the invention results in a significant reduction of the mortality rates and number of S. aureus in the organs of the treated human being

The invention also concerns a kit containing the peptide or arrangement of peptides according to the invention for the detection, especially a highly specific detection, of *S. aureus*.

The invention further concerns the use of the peptide or detection, especially a highly specific detection, of *S. aureus*.

Furthermore, the invention concerns a cell line, in particular an insect cell line or a mammalian cell line, in particular a Chinese hamster ovary (CHO) cell line or a hybridoma cell line, which produces an antibody, antibody fragment, ScFv or ScFvFc as specified above.

The invention further concerns a method of treatment of a human being or an animal which human being or animal has an infection with Staphylococcus aureus, especially methicillin resistant or methicillin sensitive Staphylococcus aureus, or is at risk of getting such an infection, wherein the peptide or arrangement of peptides according to the invention is administered to the human being or the animal. The peptide or arrangement of peptides is administered in a dosage that is sufficient to reduce the amount of S. aureus or to cause an elimination of S. aureus in the human being or the animal. The peptide or arrangement of peptides may be mixed with a suitable carrier.

The human being or the animal may have mastitis, an S. aureus bacteremia, in particular a primary or secondary bacteremia, a blood stream infection, in particular a primary or secondary blood stream infection, a prosthetic infection, a graft infection, a soft tissue infection, a surgery associated infection, an infant or newborn infection, a dialysis associated infection, a pneumonia, a bone infection, or a sepsis caused by the infection.

The peptide or arrangement of peptides may be present in a mixture with at least one other peptide or arrangement of peptides directed against at least one further epitope of S. aureus. The peptide or arrangement of peptides may be mixed with plasma or blood of a mammal, especially of a human being, before it is administered. The peptide or arrangement of peptides may be administered topically or systemically, in particular intravenously, intrapulmonary, intraperitoneally, nasally or sublingually. They may also be administered together with at least one antibiotic.

EMBODIMENTS OF THE INVENTION

FIG. 1 shows the result of a competitive ELISA to determine binding of different anti-IsaA antibodies to the IsaA antigen.

FIG. 2 shows a bacterial cell ELISA to determine binding of different anti-IsaA antibodies to different S. aureus strains.

FIG. 3 shows the quantification of killing of S. aureus strain Newman by phagocytosis by phagocytizing blood cells in heparinized human whole blood.

FIG. **4** shows the quantification of killing of *S. aureus* strain Newman by phagocytosis by phagocytizing blood cells in heparinized human whole blood from healthy blood donators (n=15).

FIG. 5 shows the quantification of killing of *S. aureus* strain 5 Newman by phagocytosis by phagocytizing blood cells in heparinized human whole blood from dialysis patients.

FIG. **6** shows the opsonophagocytic killing of bioluminescent *S. aureus* strain Newman (Newlux) in the presence of two concentrations of anti-IsaA antibody UK66-2 versus isotype control in HL-60 cells.

ScFv molecules containing sequences SEQ ID NOs:1 and 2, SEQ ID NOs:1 and 3 as well as other sequences have been expressed in *E. coli* and tested for binding and affinity in ELISA and competitive ELISA. The results showed that 15 affinity of an ScFv molecule containing sequences SEQ ID NO:1 and SEQ ID NO:2 is about 10 times higher than affinity of an ScFv molecule containing sequences SEQ ID NO:1 and SEQ ID NO:3.

Vector constructs for the expression of complete antibodies 20 has been transfected in CHO cells. IgG1 heavy chain, human γ1 allotype Gm1,17 according to sequence SEQ ID NO:4 (comprising sequence SEQ ID NO:1) with the Igk leader sequence SEQ ID NO:8 (resulting in sequence SEQ ID NO:5) and IgG light chain K according to SEQ ID NO:6 (comprising sequence SEQ ID NO:2) with the Igk leader sequence SEQ ID NO:8 (resulting in sequence SEQ ID NO:7) have been expressed to form antibody UK66-2. To investigate the influence of the isotype on functional activity IgG2 and IgG4 isotypes have been synthesized.

For this the IgG1 heavy chain has been replaced by IgG2 heavy chain, allotype G2m (23) according to sequence SEQ ID NO:9 with the Igk leader sequence SEQ ID NO:8 (resulting in sequence SEQ ID NO:10) or IgG4 heavy chain according to sequence SEQ ID NO:11 with the Igk leader sequence SEQ ID NO:8 (resulting in sequence SEQ ID NO:12).

After expression IgG1 antibodies have been purified from the supernatant of the CHO cells via a protein A column. The purified antibodies have been tested for the kinetics of binding, binding in ELISA, competitive ELISA, Western Blot and 40 immunofluorescence und for function in phagocytosis assays with human phagocytizing blood cells. In funktional assays the antibody comprising sequences SEQ ID NOs:1 and 2 (UK66-2) enhanced oxidative burst und killing of *S. aureus* significantly more than known antibody UK66.

The kinetics of binding of IsaA to immobilized antibody UK66-2 was determined by means of label-free surface plasmon resonance using the BIACORE®2000 system (GE Healthcare Europe GmbH, Munzinger Strasse 5, 79111 Freiburg, Germany). Reversible immobilization of the antibody UK66-2 was performed using an anti Fab antibody. Interaction analyses were performed using HBS-EP buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 3.4 mM EDTA, 0.005% Tween 20 (polyoxyethylene (20) sorbitan monolaurate)). Sensorgrams were recorded at a flow rate of 30 µl/min 55 at 25° C.

Affinities and rate constants for association (k_{on}) and for dissociation (k_{off}) were calculated using the BIA evaluation software 4.0.1 (Biacore) fitting the obtained sensorgrams to a 1:1 Langmuir binding model. In this way a dissociation constant K_D of 4.8 nM was determined in two independent measurements. Rate constants for association and dissociation of the interaction between UK66-2 and IsaA were determined to be $3.7 \times 10^5 \, \mathrm{M}^{-1} \mathrm{s}^{-1} \, (k_{on})$ and $1.8 \times 10^{-3} \, \mathrm{s}^{-1} \, (k_{off})$, respectively.

FIG. 1 shows the result of a competitive ELISA to determine binding of different anti-IsaA antibodies to soluble recombinant IsaA antigen. The optical density at 450 nm

6

indicates binding of the antibodies to IsaA. Soluble IsaA was added in different concentrations. The three lines represent the results received with the following anti IsaA antibodies:

Upper line at 0.01 μM soluble IsaA: UK66 (reference antibody known from WO 2010/133600 A1)

Middle line at 0.01 μ M soluble IsaA: UK66-2 (antibody with a binding site comprising sequences SEQ ID NO:1 and SEQ ID NO:2)

Lower line at 0.01 μM soluble IsaA: UK66-3 (antibody with a binding site comprising sequences SEQ ID NO:1 and SEQ ID NO:3)

Method Description:

Nunc-Maxisorp 96-well plates were coated with 50 µl/well of IsaA (0.5 μg/well in 1×PBS) and incubated at 4° C. overnight. The next day the plates were washed three times with PBS pH 7.4 containing 0.05% Tween 20 (polyoxyethylene (20) sorbitan monolaurate) (PBST). After washing blocking was performed by addition of 200 µl 5% skimmed milk powder/PBS and incubated for 1 h at room temperature. The wells were washed twice with PBST (0.05%) and primary anti-IsaA antibody was added in serial concentrations ranging from 0.4 µM to 0.01 µM. The primary anti-IsaA-IgG1 antibodies were diluted in 2.5% skimmed milk powder/PBS and incubated for 1 h at 37° C. The wells were then washed three times with PBST (0.05%) and 50 µl of horseradish peroxidase linked secondary antibody 1:5000 diluted in 2.5% skimmed milk powder/PBS was added and incubated for 1 h at 37° C. The wells were washed with PBST (0.05%) four times and 50 μl of TMB (3,3',5,5'-tetramethylbenzadine) (Thermo Scientific Pierce ELISA substrate) was added and incubated for 15 min at 37° C. The reaction was stopped with 100 μl of 1N H₂SO₄ and optical density of the substrate reaction was analyzed with an ELISA plate reader at OD 450 nm.

ing in sequence SEQ ID NO:10) or IgG4 heavy chain according to sequence SEQ ID NO:11 with the Igk leader sequence SEQ ID NO:8 (resulting in sequence SEQ ID NO:12).

After expression IgG1 antibodies have been purified from the supernatant of the CHO cells via a protein A column. The purified antibodies have been tested for the kinetics of binding, binding in ELISA, competitive ELISA, Western Blot and 40 results received with the following anti IsaA antibodies:

Left column: antibody UK66 (reference antibody)

Middle column: antibody UK66-2

Right column: antibody UK66-3.

Method Description:

The strains of S. aureus were cultured in B media at 37° C. overnight. The bacteria were pelleted by centrifugation at 13000 rpm for 1 minute and washed with PBS (phosphate buffered saline). After the centrifugation step the pellet was resuspended in 1 ml PBS. A bacteria suspension containing 5×10⁷ bacteria/50 μl was prepared. Nunc-Maxisorp 96-well plates were coated with 50 µl/well of the bacteria suspension and incubated at 4° C. overnight. The next day the plates were washed three times with PBS pH 7.4 containing 0.05% Tween 20 (polyoxyethylene (20) sorbitan monolaurate) (PBST). After washing blocking was performed by addition of 200 µl 5% skimmed milk powder/PBS and incubated for 1 h at room temperature. The wells were washed twice with PBST (0.05%) and primary anti-IsaA antibody was added. The primary anti-IsaA-IgG1 antibodies were diluted 1:2000 in 2.5% skimmed milk powder/PBS and 50 µl/well were added and incubated for 1 h at 37° C. The wells were then washed three times with PBST (0.05%) and 50 µl of horseradish peroxidase linked secondary antibody 1:5000 diluted in 2.5% skimmed milk powder/PBS was added and incubated for 1 h at 37° C. The wells were washed with PBST (0.05%) four times and 50 μl of TMB (3,3',5,5'-tetramethylbenzadine) (Thermo Scientific Pierce ELISA substrate) was added and incubated for 15

min at 37° C. The reaction was stopped with 100 μ l of 1N $\rm H_2SO_4$ and optical density of the substrate reaction was analyzed with an ELISA plate reader at OD 450 nm.

7

FIG. 3 shows the quantification of killing of *S. aureus* strain Newman by phagocytosis by phagocytizing blood cells in 5 heparinized human whole blood. Bacteria were incubated 30 min with the heparinized human whole blood. The number of viable bacteria after incubation without antibody solution was set 100% (left column). Killing was significantly increased in the presence of UK66-2 (right column) compared to isotype control antibodies (middle column). Method Description:

S. aureus strain Newman was cultured in LB medium at 37° C. overnight. The bacteria were pelleted by centrifugation at 13000 rpm for 1 minute and washed with PBS. The cen- 15 trifugation step was repeated and the bacteria were resuspended in 1 ml PBS. Bacteria solution of 5×10⁷ bacteria/20 μl was prepared. 100 µl of heparinized blood was added into 1.5 ml tubes and stored on ice. 20 µl of bacterial suspension and antibody solution were added, excluded the negative control 20 sample which contained bacteria but no antibodies. The samples were incubated at 37° C. for 30 min with constant movement overhead in a hybridisation oven. Phagocytosis was stopped by placing the samples on ice. Blood cells were lysed with 0.1% fresh prepared Saponin (20 min on ice). Two 25 serial dilutions of the samples were prepared. 20 μ l of 10^{-2} , 10⁻³ and 10⁻⁴ dilution, respectively were plated in duplicate on LB plates and incubated at 37° C. for 24 h. The colonies were counted and killing was calculated setting the number of viable bacteria in blood without antibody solution as 100%.

FIG. 4 shows the quantification of killing of *S. aureus* strain Newman by phagocytosis by phagocytizing blood cells in heparinized human whole blood from healthy blood donators (n=15). FIG. 5 shows the quantification of killing of *S. aureus* strain Newman by phagocytosis by phagocytizing blood cells 35 in heparinized human whole blood from dialysis patients (n=7). In both cases bacteria were incubated 60 min with the heparinized blood. The number of viable bacteria after incubation without antibody solution was set 100% (left scatter plot "Placebo"). Killing was significantly increased in the 40 presence of UK66-2 (third and fourth scatter plot "UK66-2 [75 μg/ml]" and "UK66-2[900 μg/ml]") compared to isotype control antibodies (second scatter plot "Isotype control [900 μg/ml]").

Method Description:

S. aureus strain Newman was cultured in LB medium at 37° C. overnight. The bacteria were pelleted by centrifugation at 13000 rpm for 1 minute and washed with PBS. The centrifugation step was repeated and the bacteria were resuspended in 1 ml PBS. Bacteria solution of 5×10^{7} bacteria/20 μ l 50 was prepared. $100\,\mu$ l of heparinized blood was added into 1.5 ml tubes and stored on ice. $20\,\mu$ l of bacterial suspension and

antibody solution were added, excluded the negative control sample which contained bacteria but no antibodies. The samples were incubated at 37° C. for 60 min with constant movement overhead in a hybridisation oven. Phagocytosis was stopped by placing the samples on ice. Blood cells were lysed with 0.1% fresh prepared Saponin (20 min on ice). Two serial dilutions of the samples were prepared. 20 μl of 10^{-2} , 10^{-3} and 10^{-4} dilution, respectively were plated in duplicate on LB plates and incubated at 37° C. for 24 h. The colonies were counted and killing was calculated. The number of viable bacteria in blood without antibody solution was set 100%.

FIG. 6 shows killing of bioluminescent *S. aureus* (S. a.) strain Newman (Newlux) in the presence of two concentrations of anti-IsaA antibody UK66-2 (20 μg/ml and 200 μg/ml versus isotype control (200 μg/ml) in HL-60 cells. Determination of relative number of surviving bacteria was performed by measurement of bioluminescence. Surviving bacteria are given as light emission (RLU=relative light units). Bacterial killing is concentration dependent with UK66-2 and is not observed with an isotype-matched human IgG1 control antibody.

Method Description:

A single colony of S. aureus strain Newman harbouring the luxABCED operon was used to inoculate 5 ml LB medium. Since the luxABCED operon causes a luminescence in living but not in dead bacteria the luminescence correlates with the number of living bacteria. The bacteria were cultivated overnight and 50 µl of this culture were used to inoculate 5 ml LB medium supplemented with 30 μg/ml kanamycin. The culture was cultivated on a rotary shaker at 200 rpm for 4-6 h at 37° C. Bioluminescence of the bacteria was determined using a Lumat LB 9501 luminometer (Berthold Technologies, Bad Wildbad, Germany). The culture was ready for performing the assay when 100 µl of the culture generated bioluminescence signals ranged between 16000-24000 relative light units (RLU). Following cultivation, the bacteria were washed twice in phosphate buffered saline (PBS) and resuspended in Opti-MEM® medium (Life Technologies, Darmstadt, Germany) to a final concentration of 1×10/ml. Phagocytic HL-60 cells were differentiated with 0.8% DMF for 5 days and resuspended to 1×10^8 cells/ml in Opti-MEM®, and 50 µl per well were seeded in a 96-well tissue culture plate (Greiner Bio-One, Frickenhausen, Germany). Antibody solution (50 μ l) was added followed by 100 μ l of S. aureus (1×10⁹/ml). HL-60 cells, antibody and bacteria were incubated at 37° C. and bioluminescence was measured continuously at 15 min intervals for 240 min to determine the optimal signal-noise ratio. All assays were performed in triplicate and repeated at least three times. Bioluminescence was determined using the multi-mode reader Infinite 200 Pro (TECAN, Mannedorf, Switzerland).

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 14

<210> SEQ ID NO 1
<211> LENGTH: 118
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Modified sequence of a sequence from mus musculus

-continued

Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 10 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Asp Ile Asn Gly Asn Gly Gly Ser Thr Tyr Tyr Pro Asp Thr Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Val Arg Arg Gly Gly Tyr Tyr Ala Leu Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 <210> SEQ ID NO 2 <211> LENGTH: 113 <212> TYPE: PRT <213 > ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Modified sequence of a sequence from mus musculus <400> SEQUENCE: 2 Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Ser Val Thr Pro Gly 10 Gln Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ile 25 Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 40 Pro Gln Leu Leu Ile Tyr Arg Val Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Ser Thr His Val Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Leu Lys 105 Arg <210> SEQ ID NO 3 <211> LENGTH: 113 <212> TYPE: PRT <213 > ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Modified sequence of a sequence from mus musculus <400> SEQUENCE: 3 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1.0 Glu Arg Ala Thr Leu Ser Cys Arg Ser Ser Gln Ser Leu Val His Ile Asn Gly Asn Thr Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Ala

Pro Arg Leu Leu Ile Tyr Arg Val Ser Asn Arg Phe Ser Gly Ile Pro

-continued

55 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile 70 75 Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Ser Gln Ser Thr His Val Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Leu Lys 105 Arg <210> SEQ ID NO 4 <211> LENGTH: 448 <212> TYPE: PRT <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Sequence containing SEQ ID NO:1 and IgG1 heavy chain, human gamma1 allotype Gm1,17 <400> SEQUENCE: 4 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 40 Ser Asp Ile Asn Gly Asn Gly Gly Ser Thr Tyr Tyr Pro Asp Thr Val 55 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Val Arg Arg Gly Gly Tyr Tyr Ala Leu Asp Tyr Trp Gly Gln Gly Thr 105 Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro 120 Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 250 Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val

	290					295					300				
Ser 305	Val	Leu	Thr	Val	Leu 310	His	Gln	Asp	Trp	Leu 315	Asn	Gly	Lys	Glu	Tyr 320
Lys	Cys	Lys	Val	Ser 325	Asn	Lys	Ala	Leu	Pro 330	Ala	Pro	Ile	Glu	Lys 335	Thr
Ile	Ser	Lys	Ala 340	Lys	Gly	Gln	Pro	Arg 345	Glu	Pro	Gln	Val	Tyr 350	Thr	Leu
Pro	Pro	Ser 355	Arg	Asp	Glu	Leu	Thr 360	Lys	Asn	Gln	Val	Ser 365	Leu	Thr	Cha
Leu	Val 370	Lys	Gly	Phe	Tyr	Pro 375	Ser	Asp	Ile	Ala	Val 380	Glu	Trp	Glu	Ser
Asn 385	Gly	Gln	Pro	Glu	Asn 390	Asn	Tyr	Lys	Thr	Thr 395	Pro	Pro	Val	Leu	Asp 400
Ser	Asp	Gly	Ser	Phe 405	Phe	Leu	Tyr	Ser	Lys 410	Leu	Thr	Val	Asp	Lys 415	Ser
Arg	Trp	Gln	Gln 420	Gly	Asn	Val	Phe	Ser 425	Сла	Ser	Val	Met	His 430	Glu	Ala
Leu	His	Asn 435	His	Tyr	Thr	Gln	Lys 440	Ser	Leu	Ser	Leu	Ser 445	Pro	Gly	Lys
<213 <213 <213 <220)> FI	ENGTH (PE : RGAN) EATUR	H: 46 PRT [SM: RE:	8 Art:	ific: TION		O ID	NO : 4	l wit	∴h le	eade:	r sed	quenc	ce Sl	EQ ID NO:8
< 400)> SI	EQUE	ICE :	5											
Met 1	Glu	Thr	Asp	Thr 5	Leu	Leu	Leu	Trp	Val 10	Leu	Leu	Leu	Trp	Val 15	Pro
Gly	Ser	Thr	Gly 20	Glu	Val	Gln	Leu	Leu 25	Glu	Ser	Gly	Gly	Gly 30	Leu	Val
Gln	Pro	Gly 35	Gly	Ser	Leu	Arg	Leu 40	Ser	Сув	Ala	Ala	Ser 45	Gly	Phe	Thr
Phe	Ser 50	Asn	Tyr	Tyr	Met	Ser 55	Trp	Val	Arg	Gln	Ala 60	Pro	Gly	Lys	Gly
Leu 65	Glu	Trp	Val	Ser	Asp 70	Ile	Asn	Gly	Asn	Gly 75	Gly	Ser	Thr	Tyr	Tyr 80
Pro	Asp	Thr	Val	Lys 85	Gly	Arg	Phe	Thr	Ile 90	Ser	Arg	Asp	Asn	Ser 95	Lys
Asn	Thr	Leu	Tyr 100	Leu	Gln	Met	Asn	Ser 105	Leu	Arg	Ala	Glu	Asp 110	Thr	Ala
Val	Tyr	Tyr 115	Cys	Val	Arg	Arg	Gly 120	Gly	Tyr	Tyr	Ala	Leu 125	Asp	Tyr	Trp
Gly	Gln 130	Gly	Thr	Thr	Val	Thr 135	Val	Ser	Ser	Ala	Ser 140	Thr	ГÀа	Gly	Pro
Ser 145	Val	Phe	Pro	Leu	Ala 150	Pro	Ser	Ser	Lys	Ser 155	Thr	Ser	Gly	Gly	Thr 160
Ala	Ala	Leu	Gly	Сув 165	Leu	Val	Lys	Asp	Tyr 170	Phe	Pro	Glu	Pro	Val 175	Thr
Val	Ser	Trp	Asn 180	Ser	Gly	Ala	Leu	Thr 185	Ser	Gly	Val	His	Thr 190	Phe	Pro
Ala	Val	Leu 195	Gln	Ser	Ser	Gly	Leu 200	Tyr	Ser	Leu	Ser	Ser 205	Val	Val	Thr
**- 7	Pro	Ser	Ser	Ser	Leu	Gly	Thr	Gln	Thr	Tyr	Ile	CAa	Asn	Val	Asn

	210					215					220				
His 225	Lys	Pro	Ser	Asn	Thr 230	Lys	Val	Asp	Lys	Lys 235	Val	Glu	Pro	Lys	Ser 240
Cys	Asp	Lys	Thr	His 245	Thr	Cys	Pro	Pro	Сув 250	Pro	Ala	Pro	Glu	Leu 255	Leu
Gly	Gly	Pro	Ser 260	Val	Phe	Leu	Phe	Pro 265	Pro	Lys	Pro	ГÀЗ	Asp 270	Thr	Leu
Met	Ile	Ser 275	Arg	Thr	Pro	Glu	Val 280	Thr	Сув	Val	Val	Val 285	Asp	Val	Ser
His	Glu 290	Asp	Pro	Glu	Val	Lуз 295	Phe	Asn	Trp	Tyr	Val 300	Asp	Gly	Val	Glu
Val 305	His	Asn	Ala	Lys	Thr 310	Lys	Pro	Arg	Glu	Glu 315	Gln	Tyr	Asn	Ser	Thr 320
Tyr	Arg	Val	Val	Ser 325	Val	Leu	Thr	Val	Leu 330	His	Gln	Asp	Trp	Leu 335	Asn
Gly	Lys	Glu	Tyr 340	Lys	CAa	ГÀа	Val	Ser 345	Asn	Lys	Ala	Leu	Pro 350	Ala	Pro
Ile	Glu	Lys 355	Thr	Ile	Ser	ГÀа	Ala 360	Lys	Gly	Gln	Pro	Arg 365	Glu	Pro	Gln
Val	Tyr 370	Thr	Leu	Pro	Pro	Ser 375	Arg	Asp	Glu	Leu	Thr 380	ГÀа	Asn	Gln	Val
Ser 385	Leu	Thr	Сув	Leu	Val 390	Lys	Gly	Phe	Tyr	Pro 395	Ser	Asp	Ile	Ala	Val 400
Glu	Trp	Glu	Ser	Asn 405	Gly	Gln	Pro	Glu	Asn 410	Asn	Tyr	ГÀа	Thr	Thr 415	Pro
Pro	Val	Leu	Asp 420	Ser	Asp	Gly	Ser	Phe 425	Phe	Leu	Tyr	Ser	Lys 430	Leu	Thr
Val	Asp	Lys 435	Ser	Arg	Trp	Gln	Gln 440	Gly	Asn	Val	Phe	Ser 445	Cys	Ser	Val
Met	His 450	Glu	Ala	Leu	His	Asn 455	His	Tyr	Thr	Gln	Lys 460	Ser	Leu	Ser	Leu
Ser 465	Pro	Gly	Lys												
<213 <213 <223	0 > SI 1 > LI 2 > T 3 > OI 0 > FI 3 > O	ENGTI YPE : RGAN EATUI	H: 2: PRT ISM: RE:	19 Art:			QI Ç	NO : 2	2 wit	ch hi	ıman	IgG	ligl	nt cl	nain K
< 400	O> SI	EQUEI	NCE :	6											
Asp 1	Val	Val	Met	Thr 5	Gln	Thr	Pro	Leu	Ser 10	Leu	Ser	Val	Thr	Pro 15	Gly
Gln	Pro	Ala	Ser 20	Ile	Ser	CÀa	Arg	Ser 25	Ser	Gln	Ser	Leu	Val 30	His	Ile
Asn	Gly	Asn 35	Thr	Tyr	Leu	His	Trp 40	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
Pro	Gln 50	Leu	Leu	Ile	Tyr	Arg 55	Val	Ser	Asn	Arg	Phe	Ser	Gly	Val	Pro
Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Val 90	Tyr	Tyr	CAa	Ser	Gln 95	Ser
Thr	His	Val	Pro	Trp	Thr	Phe	Gly	Gly	Gly	Thr	ГÀа	Leu	Glu	Leu	Lys

			100					105					110		
Arg	Thr	Val 115	Ala	Ala	Pro	Ser	Val 120	Phe	Ile	Phe	Pro	Pro 125	Ser	Asp	Glu
Gln	Leu 130	Lys	Ser	Gly	Thr	Ala 135	Ser	Val	Val	Сув	Leu 140	Leu	Asn	Asn	Phe
Tyr 145	Pro	Arg	Glu	Ala	Lys 150	Val	Gln	Trp	Lys	Val 155	Asp	Asn	Ala	Leu	Gln 160
Ser	Gly	Asn	Ser	Gln 165	Glu	Ser	Val	Thr	Glu 170	Gln	Asp	Ser	ГÀз	Asp 175	Ser
Thr	Tyr	Ser	Leu 180	Ser	Ser	Thr	Leu	Thr 185	Leu	Ser	ГÀа	Ala	Asp 190	Tyr	Glu
Lys	His	Lys 195	Val	Tyr	Ala	Cys	Glu 200	Val	Thr	His	Gln	Gly 205	Leu	Ser	Ser
Pro	Val 210	Thr	Lys	Ser	Phe	Asn 215	Arg	Gly	Glu	Сув					
<213 <213 <223)> FI	ENGTI (PE : RGAN: EATUI	H: 2: PRT ISM: RE:	39 Art:	ific: TION		Õ ID	NO : 6	5 wit	ch le	eade:	r se	quen	ce SI	EQ ID NO:8
< 400)> SI	EQUEI	ICE:	7											
Met 1	Glu	Thr	Asp	Thr 5	Leu	Leu	Leu	Trp	Val 10	Leu	Leu	Leu	Trp	Val 15	Pro
Gly	Ser	Thr	Gly 20	Asp	Val	Val	Met	Thr 25	Gln	Thr	Pro	Leu	Ser 30	Leu	Ser
Val	Thr	Pro 35	Gly	Gln	Pro	Ala	Ser 40	Ile	Ser	Сув	Arg	Ser 45	Ser	Gln	Ser
Leu	Val 50	His	Ile	Asn	Gly	Asn 55	Thr	Tyr	Leu	His	Trp 60	Tyr	Leu	Gln	Lys
Pro 65	Gly	Gln	Ser	Pro	Gln 70	Leu	Leu	Ile	Tyr	Arg 75	Val	Ser	Asn	Arg	Phe 80
Ser	Gly	Val	Pro	85 85	Arg	Phe	Ser	Gly	Ser 90	Gly	Ser	Gly	Thr	Asp 95	Phe
Thr	Leu	Lys	Ile 100	Ser	Arg	Val	Glu	Ala 105	Glu	Asp	Val	Gly	Val 110	Tyr	Tyr
Сув	Ser	Gln 115	Ser	Thr	His	Val	Pro 120	Trp	Thr	Phe	Gly	Gly 125	Gly	Thr	Lys
Leu	Glu 130	Leu	Lys	Arg	Thr	Val 135	Ala	Ala	Pro	Ser	Val 140	Phe	Ile	Phe	Pro
Pro 145	Ser	Asp	Glu	Gln	Leu 150	Lys	Ser	Gly	Thr	Ala 155	Ser	Val	Val	Cys	Leu 160
Leu	Asn	Asn	Phe	Tyr 165	Pro	Arg	Glu	Ala	Lys 170	Val	Gln	Trp	Lys	Val 175	Aap
Asn	Ala	Leu	Gln 180	Ser	Gly	Asn	Ser	Gln 185	Glu	Ser	Val	Thr	Glu 190	Gln	Asp
Ser	Lys	Asp 195	Ser	Thr	Tyr	Ser	Leu 200	Ser	Ser	Thr	Leu	Thr 205	Leu	Ser	Lys
Ala	Asp 210	Tyr	Glu	Lys	His	Lys 215	Val	Tyr	Ala	Сла	Glu 220	Val	Thr	His	Gln
Gly 225	Leu	Ser	Ser	Pro	Val 230	Thr	Lys	Ser	Phe	Asn 235	Arg	Gly	Glu	Cys	

```
<210> SEQ ID NO 8
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEOUENCE: 8
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
Gly Ser Thr Gly
<210> SEQ ID NO 9
<211> LENGTH: 444
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: SEQ ID NO:1 with IgG2 heavy chain, allotype G2m
<400> SEQUENCE: 9
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr
Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                     40
Ser Asp Ile Asn Gly Asn Gly Gly Ser Thr Tyr Tyr Pro Asp Thr Val
                      55
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
Val Arg Arg Gly Gly Tyr Tyr Ala Leu Asp Tyr Trp Gly Gln Gly Thr
                             105
Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro
                           120
Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly
Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn
Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln
Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser
Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His Lys Pro Ser
Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys Val Glu Cys
Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe
                   230
Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
                           250
Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe
                        265
Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro
Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr
```

	290					295					300				
Val 305	Val	His	Gln	Asp	Trp 310	Leu	Asn	Gly	Lys	Glu 315	Tyr	Lys	Cys	Lys	Val 320
Ser	Asn	Lys	Gly	Leu 325	Pro	Ala	Pro	Ile	Glu 330	Lys	Thr	Ile	Ser	Lys 335	Thr
Lys	Gly	Gln	Pro 340	Arg	Glu	Pro	Gln	Val 345	Tyr	Thr	Leu	Pro	Pro 350	Ser	Arg
Glu	Glu	Met 355	Thr	Lys	Asn	Gln	Val 360	Ser	Leu	Thr	Cys	Leu 365	Val	Lys	Gly
Phe	Tyr 370	Pro	Ser	Asp	Ile	Ser 375	Val	Glu	Trp	Glu	Ser 380	Asn	Gly	Gln	Pro
Glu 385	Asn	Asn	Tyr	Lys	Thr 390	Thr	Pro	Pro	Met	Leu 395	Asp	Ser	Asp	Gly	Ser 400
Phe	Phe	Leu	Tyr	Ser 405	Lys	Leu	Thr	Val	Asp 410	Lys	Ser	Arg	Trp	Gln 415	Gln
Gly	Asn	Val	Phe 420	Ser	CAa	Ser	Val	Met 425	His	Glu	Ala	Leu	His 430	Asn	His
Tyr	Thr	Gln 435	Lys	Ser	Leu	Ser	Leu 440	Ser	Pro	Gly	ГЛа				
<211 <212 <213 <220)> SE L> LE 2> TY 3> OF)> FE 3> OT	ENGTH PE: RGANI EATUR	H: 46 PRT SM: RE:	Art:			O ID	NO : 9	∍ wit	∶h le	eadei	r sed	quenc	ce SI	EQ ID NO:8
< 400)> SE	EQUEN	ICE :	10											
Met 1	Glu	Thr	Asp	Thr 5	Leu	Leu	Leu	Trp	Val 10	Leu	Leu	Leu	Trp	Val 15	Pro
Gly	Ser	Thr	Gly 20	Glu	Val	Gln	Leu	Leu 25	Glu	Ser	Gly	Gly	Gly 30	Leu	Val
Gln	Pro	Gly 35	Gly	Ser	Leu	Arg	Leu 40	Ser	СЛа	Ala	Ala	Ser 45	Gly	Phe	Thr
Phe	Ser 50	Asn	Tyr	Tyr	Met	Ser 55	Trp	Val	Arg	Gln	Ala 60	Pro	Gly	Lys	Gly
Leu 65	Glu	Trp	Val	Ser	Asp 70	Ile	Asn	Gly	Asn	Gly 75	Gly	Ser	Thr	Tyr	Tyr 80
Pro	Asp	Thr	Val	Lys 85	Gly	Arg	Phe	Thr	Ile 90	Ser	Arg	Asp	Asn	Ser 95	Lys
Asn	Thr	Leu	Tyr 100	Leu	Gln	Met	Asn	Ser 105	Leu	Arg	Ala	Glu	Asp 110	Thr	Ala
Val	Tyr	Tyr 115	Cys	Val	Arg	Arg	Gly 120	Gly	Tyr	Tyr	Ala	Leu 125	Asp	Tyr	Trp
Gly	Gln 130	Gly	Thr	Thr	Val	Thr 135	Val	Ser	Ser	Ala	Ser 140	Thr	Lys	Gly	Pro
Ser 145	Val	Phe	Pro	Leu	Ala 150	Pro	Сув	Ser	Arg	Ser 155	Thr	Ser	Glu	Ser	Thr 160
Ala	Ala	Leu	Gly	Cys 165	Leu	Val	Lys	Asp	Tyr 170	Phe	Pro	Glu	Pro	Val 175	Thr
Val	Ser	Trp	Asn 180	Ser	Gly	Ala	Leu	Thr 185	Ser	Gly	Val	His	Thr 190	Phe	Pro
Ala	Val	Leu 195	Gln	Ser	Ser	Gly	Leu 200	Tyr	Ser	Leu	Ser	Ser 205	Val	Val	Thr
Val	Pro	Ser	Ser	Asn	Phe	Gly	Thr	Gln	Thr	Tyr	Thr	CÀa	Asn	Val	Asp

				n	

	210					215					220				
His 225	Lys	Pro	Ser	Asn	Thr 230	Lys	Val	Asp	Lys	Thr 235	Val	Glu	Arg	Lys	Cys 240
CAa	Val	Glu	Cys	Pro 245	Pro	Cys	Pro	Ala	Pro 250	Pro	Val	Ala	Gly	Pro 255	Ser
Val	Phe	Leu	Phe 260	Pro	Pro	ГÀЗ	Pro	Lys 265	Asp	Thr	Leu	Met	Ile 270	Ser	Arg
Thr	Pro	Glu 275	Val	Thr	CAa	Val	Val 280	Val	Asp	Val	Ser	His 285	Glu	Asp	Pro
Glu	Val 290	Gln	Phe	Asn	Trp	Tyr 295	Val	Asp	Gly	Val	Glu 300	Val	His	Asn	Ala
Lys 305	Thr	Lys	Pro	Arg	Glu 310	Glu	Gln	Phe	Asn	Ser 315	Thr	Phe	Arg	Val	Val 320
Ser	Val	Leu	Thr	Val 325	Val	His	Gln	Asp	Trp 330	Leu	Asn	Gly	Lys	Glu 335	Tyr
ГÀа	CÀa	Lys	Val 340	Ser	Asn	ГÀз	Gly	Leu 345	Pro	Ala	Pro	Ile	Glu 350	ГÀа	Thr
Ile	Ser	Lys 355	Thr	ГÀа	Gly	Gln	Pro 360	Arg	Glu	Pro	Gln	Val 365	Tyr	Thr	Leu
Pro	Pro 370	Ser	Arg	Glu	Glu	Met 375	Thr	Lys	Asn	Gln	Val 380	Ser	Leu	Thr	Cys
Leu 385	Val	Lys	Gly	Phe	Tyr 390	Pro	Ser	Asp	Ile	Ser 395	Val	Glu	Trp	Glu	Ser 400
Asn	Gly	Gln	Pro	Glu 405	Asn	Asn	Tyr	Lys	Thr 410	Thr	Pro	Pro	Met	Leu 415	Asp
Ser	Asp	Gly	Ser 420	Phe	Phe	Leu	Tyr	Ser 425	Lys	Leu	Thr	Val	Asp 430	Lys	Ser
Arg	Trp	Gln 435	Gln	Gly	Asn	Val	Phe 440	Ser	Сув	Ser	Val	Met 445	His	Glu	Ala
Leu	His 450	Asn	His	Tyr	Thr	Gln 455	Lys	Ser	Leu	Ser	Leu 460	Ser	Pro	Gly	Lys
<211 <212 <213 <220	0 > SI L > LI 2 > TY 3 > OF	ENGTI (PE : RGAN : EATUI	H: 44 PRT ISM: RE:	45 Art:											
	3 > 01 0 > SI				LION	: SE(מד נֿ	NO:	L Wit	on 19	JG4 1	neavy	y cna	ain	
					Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asn	Tyr
Tyr	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
Ser	Asp 50	Ile	Asn	Gly	Asn	Gly 55	Gly	Ser	Thr	Tyr	Tyr 60	Pro	Asp	Thr	Val
Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Val	Arg	Arg	Gly 100	Gly	Tyr	Tyr	Ala	Leu 105	Asp	Tyr	Trp	Gly	Gln 110	Gly	Thr
Thr	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro

115		120	125	
Leu Ala Pro 130		Ser Thr Ser Gl	u Ser Thr Ala 140	Ala Leu Gly
Cys Leu Val 145	Lys Asp Tyr I 150	Phe Pro Glu Pr	o Val Thr Val 155	Ser Trp Asn 160
Ser Gly Ala	Leu Thr Ser (165	Gly Val His Th 17		Val Leu Gln 175
_	Leu Tyr Ser I 180	Leu Ser Ser Va 185	l Val Thr Val	Pro Ser Ser 190
Ser Leu Gly 195	Thr Lys Thr 1	Tyr Thr Cys As: 200	n Val Asp His 205	Lys Pro Ser
Asn Thr Lys 210		Arg Val Glu Se 215	r Lys Tyr Gly 220	Pro Pro Cys
Pro Ser Cys 225	Pro Ala Pro (230	Glu Phe Leu Gl	y Gly Pro Ser 235	Val Phe Leu 240
Phe Pro Pro	Lys Pro Lys <i>I</i> 245	Asp Thr Leu Me 25	-	Thr Pro Glu 255
	Val Val Val <i>I</i> 260	Asp Val Ser Gl 265		Glu Val Gln 270
Phe Asn Trp 275	Tyr Val Asp (Gly Val Glu Va 280	l His Asn Ala 285	Lys Thr Lys
Pro Arg Glu 290		Asn Ser Thr Ty 295	r Arg Val Val 300	Ser Val Leu
Thr Val Leu 3	His Gln Asp 7	Trp Leu Asn Gl	y Lys Glu Tyr 315	Lya Cya Lya 320
Val Ser Asn	Lys Gly Leu B 325	Pro Ser Ser Il 33		Ile Ser Lys 335
	Gln Pro Arg (340	Glu Pro Gln Va 345	_	Pro Pro Ser 350
Gln Glu Glu 355	Met Thr Lys A	Asn Gln Val Se 360	r Leu Thr Cys 365	Leu Val Lys
Gly Phe Tyr 370	_	Ile Ala Val Gl 375	u Trp Glu Ser 380	Asn Gly Gln
Pro Glu Asn 385	Asn Tyr Lys 1 390	Thr Thr Pro Pr	o Val Leu Asp 395	Ser Asp Gly 400
Ser Phe Phe	Leu Tyr Ser A 405	Arg Leu Thr Va 41		Arg Trp Gln 415
-	Val Phe Ser (420	Cys Ser Val Me 425	t His Glu Ala	Leu His Asn 430
His Tyr Thr 435	Gln Lys Ser I	Leu Ser Leu Se 440	r Leu Gly Lys 445	
<220> FEATUR	: 465 PRT SM: Artificia E:		with leader se	quence SEQ ID NO:8
<400> SEQUEN		~		2 == =====
		Leu Leu Trp Va 10	l Leu Leu Leu	Trp Val Pro 15
-	Gly Glu Val (20	Gln Leu Leu Gl 25		Gly Leu Val 30
Gln Pro Gly	Gly Ser Leu <i>F</i>	Arg Leu Ser Cy 40	s Ala Ala Ser 45	Gly Phe Thr

Phe	Ser 50	Asn	Tyr	Tyr	Met	Ser 55	Trp	Val	Arg	Gln	Ala 60	Pro	Gly	Lys	Gly
Leu 65	Glu	Trp	Val	Ser	Asp 70	Ile	Asn	Gly	Asn	Gly 75	Gly	Ser	Thr	Tyr	Tyr 80
Pro	Asp	Thr	Val	Lys	Gly	Arg	Phe	Thr	Ile 90	Ser	Arg	Asp	Asn	Ser 95	Lys
Asn	Thr	Leu	Tyr 100	Leu	Gln	Met	Asn	Ser 105	Leu	Arg	Ala	Glu	Asp 110	Thr	Ala
Val	Tyr	Tyr 115	Сув	Val	Arg	Arg	Gly 120	Gly	Tyr	Tyr	Ala	Leu 125	Asp	Tyr	Trp
Gly	Gln 130	Gly	Thr	Thr	Val	Thr 135	Val	Ser	Ser	Ala	Ser 140	Thr	Lys	Gly	Pro
Ser 145	Val	Phe	Pro	Leu	Ala 150	Pro	CÀa	Ser	Arg	Ser 155	Thr	Ser	Glu	Ser	Thr 160
Ala	Ala	Leu	Gly	165 2	Leu	Val	Lys	Asp	Tyr 170	Phe	Pro	Glu	Pro	Val 175	Thr
Val	Ser	Trp	Asn 180	Ser	Gly	Ala	Leu	Thr 185	Ser	Gly	Val	His	Thr 190	Phe	Pro
Ala	Val	Leu 195	Gln	Ser	Ser	Gly	Leu 200	Tyr	Ser	Leu	Ser	Ser 205	Val	Val	Thr
Val	Pro 210	Ser	Ser	Ser	Leu	Gly 215	Thr	Lys	Thr	Tyr	Thr 220	CÀa	Asn	Val	Asp
His 225	ГÀа	Pro	Ser	Asn	Thr 230	ГÀа	Val	Asp	Lys	Arg 235	Val	Glu	Ser	ГÀа	Tyr 240
Gly	Pro	Pro	CAa	Pro 245	Ser	CÀa	Pro	Ala	Pro 250	Glu	Phe	Leu	Gly	Gly 255	Pro
Ser	Val	Phe	Leu 260	Phe	Pro	Pro	Lys	Pro 265	Lys	Asp	Thr	Leu	Met 270	Ile	Ser
Arg	Thr	Pro 275	Glu	Val	Thr	CÀa	Val 280	Val	Val	Asp	Val	Ser 285	Gln	Glu	Asp
Pro	Glu 290	Val	Gln	Phe	Asn	Trp 295	Tyr	Val	Asp	Gly	Val 300	Glu	Val	His	Asn
Ala 305	Lys	Thr	Lys	Pro	Arg 310	Glu	Glu	Gln	Phe	Asn 315	Ser	Thr	Tyr	Arg	Val 320
Val	Ser	Val	Leu	Thr 325	Val	Leu	His	Gln	330 Asp	Trp	Leu	Asn	Gly	Lys 335	Glu
Tyr	Lys	Cys	Lys 340	Val	Ser	Asn	Lys	Gly 345	Leu	Pro	Ser	Ser	Ile 350	Glu	Lys
Thr	Ile	Ser 355	Lys	Ala	ГÀа	Gly	Gln 360	Pro	Arg	Glu	Pro	Gln 365	Val	Tyr	Thr
Leu	Pro 370	Pro	Ser	Gln	Glu	Glu 375	Met	Thr	Lys	Asn	Gln 380	Val	Ser	Leu	Thr
Cys 385	Leu	Val	Lys	Gly	Phe 390	Tyr	Pro	Ser	Asp	Ile 395	Ala	Val	Glu	Trp	Glu 400
Ser	Asn	Gly	Gln	Pro 405	Glu	Asn	Asn	Tyr	Lys 410	Thr	Thr	Pro	Pro	Val 415	Leu
Asp	Ser	Asp	Gly 420	Ser	Phe	Phe	Leu	Tyr 425	Ser	Arg	Leu	Thr	Val 430	Asp	Lys
Ser	Arg	Trp 435	Gln	Glu	Gly	Asn	Val 440	Phe	Ser	Сув	Ser	Val 445	Met	His	Glu
Ala	Leu 450	His	Asn	His	Tyr	Thr 455	Gln	Lys	Ser	Leu	Ser 460	Leu	Ser	Leu	Gly

-continued

```
465
<210> SEQ ID NO 13
<211> LENGTH: 120
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 13
Gly Gly Ser Leu Lys Leu Ser Cys Ser Ala Ser Gly Phe Thr Phe Ser 20 25 30
Thr Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr 65 70 75 80
Leu Tyr Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Leu Tyr
Tyr Cys Val Arg Arg Gly Gly Tyr Tyr Ala Leu Asp Tyr Trp Gly Gln $100$
Gly Thr Thr Val Thr Val Ser Ser
<210> SEO ID NO 14
<211> LENGTH: 113
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 14
Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly
Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 \  \  \, 40 \  \  \, 45
Pro Lys Leu Leu Ile Tyr Arg Val Ser Asn Arg Phe Ser Gly Val Pro 50 \hspace{1cm} 55 \hspace{1cm} 60 \hspace{1cm}
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80
Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser 85 \phantom{\bigg|}90\phantom{\bigg|} 95
Arg
```

The invention claimed is:

- 1. An antibody or antigen binding fragment, comprising: a variable heavy chain sequence comprising SEQ ID NO: 1: and
- a variable light chain sequence comprising SEQ ID NO: 2; wherein said antibody or antigen binding fragment specifically binds to an epitope of *Staphylococcus aureus*.
- The antibody or antigen binding fragment of claim 1, wherein the antibody or antigen binding fragment enables 65 killing of *Staphylococcus aureus* by promoting phagocytosis by blood cells in a subject.
- 3. The antibody or antigen binding fragment of claim 1, wherein the heavy chain and/or the light chain are comprised by a single chain variable fragment (scFv) or by a single chain variable fragment comprising an Fc fragment of an antibody (scFvFc)
- 4. The antibody or antigen binding fragment of claim 1, wherein the antibody or antigen binding fragment is a monoclonal antibody.
- 5. The antibody or antigen binding fragment of claim 1, wherein the fragment is an Fab fragment, Fab/c fragment, Fv fragment, Fab' fragment or F(ab')₂ fragment.

- **6**. The antibody or antigen binding fragment of claim **1**, wherein the antibody or antigen binding fragment is a recombinant antibody produced in cells of a cell line.
- 7. The antibody or antigen binding fragment of claim 1, wherein the light chain comprises sequence SEQ ID NO:6, and the heavy chain comprises sequence SEQ ID NO:4, sequence SEO ID NO:9, or sequence SEO ID NO:11.
- **8.** The antibody or antigen binding fragment of claim **1** suitable for use as a medicament.
- **9**. The antibody or antigen binding fragment of claim **8**, wherein the medicament is a medicament for the treatment of a human being or an animal which human being or animal has an infection with *Staphylococcus aureus* or is at risk of getting such an infection.
- 10. The antibody or antigen binding fragment of claim 9, wherein the human being or the animal has a mastitis, an *S. aureus* bacteremia, a blood stream infection, a prosthetic infection, a graft infection, a soft tissue infection, a surgery associated infection, an infant or newborn infection, a dialysis associated infection, a pneumonia, a bone infection, or a sepsis caused by the infection.
- 11. The antibody or antigen binding fragment of claim 8, wherein the antibody or antigen binding fragment is present in a mixture with at least one other antibody or antigen binding fragment directed against at least one further epitope of *Staphylococcus aureus*.
- 12. The antibody or antigen binding fragment of claim 8, wherein the antibody or antigen binding fragment is present in a mixture with at least one antibiotic.

32

- 13. The antibody or antigen binding fragment of claim 8, wherein the antibody or antigen binding fragment is present in a mixture with plasma or blood of a mammal.
- **14**. The antibody or antigen binding fragment of claim **8**, wherein the medicament is a medicament for systemic and/or local application.
- 15. Kit containing the antibody or antigen binding fragment of claim 1 for the detection of *Staphylococcus aureus*.
- 16. Method of treatment of a human being or an animal which human being or animal has an infection with *Staphylococcus aureus* or is at risk of getting such an infection, wherein the antibody or antigen binding fragment as claimed in claim 1 is administered to the human being or the animal.
- 17. Method according to claim 16, wherein the human being or the animal has a mastitis, an *S. aureus* bacteremia, a blood stream infection, a prosthetic infection, a graft infection, a soft tissue infection, a surgery associated infection, an infant or newborn infection, a dialysis associated infection, a pneumonia, a bone infection, or a sepsis caused by the infection.
- 18. Method as claimed in claim 16, wherein the antibody or antigen binding fragment is mixed with plasma or blood of a mammal before it is administered.
- 19. Method as claimed in claim 16, wherein the antibody or antigen binding fragment is administered topically or systemically.
- 20. Method as claimed in claim 16, wherein the antibody or antigen binding fragment is administered together with at least one antibiotic.

* * * * *